Ivo Laniček, Jan Matouš, Karel Černovský

OCHRANA ÚLOŽNÝCH ZAŘÍZENÍ PŘED NEGATIVNÍMI ÚČINKY BLUDNÝCH PROUDŮ

Klíčová slova: železniční dopravní cesta, katodická ochrana, korozní měření, aktivní protikorozní ochrana, kolejový obvod

1. ÚVOD

Ze čtyř evropských hlavních trakčních proudových soustav provozují ČD,s.o.(dále jen ČD) dvě - stejnosměrnou 3 kV a jednofázovou 25 kV, 50 Hz. Stejnosměrnou trakční proudovou soustavou je elektrizováno kolem 18,5 % tratí.

Stejnosměrná trakční proudová soustava je nejvýznamnější zdroj tzv. bludných proudů, který elektrochemickou korozí výrazně ovlivňuje vodivá úložná liniová zařízení (kabely, potrubí produktovodů) a nelímová zařízení (mosty, nádrže), pokud tato zařízení nejsou dostatečně elektricky odizolována od země.

Všechny železniční správy jsou nuceny řešit protikorozní ochranu (dále PKO) úložných zařízení, která mají ve správě či majetku, s čímž souvisí i omezování úniku zpětného trakčního proudu do země na optimální hodnotu. Tato hodnota musí totiž mj.

- umožňovat účinnou ochranu před nebezpečným dotykovým napětím, která napadá vyžaduje maximální svod kolejnice-země,
- vyhovovat požadavkům vnějších podmínek činnosti kolejových obvodů.

Korozní vlivy na vodičová úložná zařízení, způsobované bludnými proudy z jednofázové trakční proudové soustavy, jsou udávány v rozmezí 2 až 7 % v porovnání se stejnosměrnou. Je však nutné mit na paměti, že SKAO, tramvajová doprava a metro jsou rovněž zdrojem bludných proudů. Jiným zdrojem koroze jsou makročlánky.

2. POJEM BLUDNÉHO PRODUU

Vyhlaška UIC č.605 VE (2.vydání) již v úvodu konstatuje, že nelze zabránit tomu, aby část zpětného trakčního proudu procházela zemí a aby se pak v blízkosti napájecí stanice vracela k druhému pólou napájecí stanice. Proudy, které procházejí zemí, jsou nazývány „bludnými proudy“. Nebezpečí koroze je v místech, kde bludné proudy opouští nezolované nebo nedostatečně korozně chráněné vodičová úložná zařízení (tzv.anodická oblast).

3. K NĚKTERÝM LEGISLATIVNÍM OPATŘENÍM

V ČR je v účinnosti zákon o drahách č.266/1994 Sb. a prováděcí vyhlášky k němu. Tato legislativní opatření, jakož i normy řeší ochranu zařízení před negativními vlivy bludných proudů. Ještě před účinností předchozích legislativních opatření byla generálním ředitelstvím ČD definována železniční dopravní cesta. Definice akceptuje Směrnici ES č.91/440. Železniční dopravní cesta zahrnuje i „stavby a zařízení nutné k
ochraně třetí strany (protihlukové stěny, opatření proti účinkům bludných proudů)").

Povinnost PKO zařízení mají rovněž správci a majitelé úložných zařízení. Tato povinnost je dána zákonnou úpravou a ČSN. Charakter PKO je převážně preventivní, tj. předcházení škodám a haváriím z důsledků koroze z bludných proudů, a to ve všech fázích investiční a provozní činnosti. Typickým příkladem může být nová česká norma ČSN 03 8350 „Požadavky na protikorozní ochranu úložných zařízení“, jejíž schválení bylo nedávno ukončeno.

PKO zařízení před negativními účinky stejnosměrných bludných proudů rovněž řeší závazná česká norma ČSN 34 1500 „Elektrotechnické předpisy. Předpisy pro elektrická trakční zařízení“ z prosince 1995.

4. PŘEHLED POUŽÍVAJÍNÝCH PROTIKOROZNÍCH OCHRAN ÚLOŽNÝCH ZAŘÍZENÍ

Z předchozího vyplývá investorům, projektantům, dodavatelům a provozovatelům úložných zařízení povinnost řešit, zajišťovat, případně udržovat a kontrolovat PKO úložných zařízení před účinky bludných proudů. Je potřebné také zdůraznit, že řešení protikorozní ochrany jednoho zařízení musí respektovat vliv na zařízení jiné, neboť z důvodu interferenčního ovlivňování může ochrana jednoho zařízení negativně působit na další zařízení v jeho blízkosti.

Minimální a povinnou PKO je tzv. pasivní ochrana úložného zařízení. Její podstata je ve zvýšení elektrického odporu úložného zařízení proti zemi, a to odizolováním povrchu zařízení od korozního prostředí (země), případně zvýšení podélného elektrického odporu úložného zařízení (např. do potrubí se instalují izolační spojky). Lze-li potrubí vybudovat z elektricky nevodivého materiálu, je pak korozní vliv z bludných proudů úplně vyřešen.

79
Kromě pasivní ochrany je používáno zařízení aktivní protikorozní ochrany (dále APKO). Princip APKO spočívá v působení elektrického stejnosměrného proudu. Jedná se o katodickou ochranu, která je vytvářena vnějším zdrojem elektrického stejnosměrného proudu nebo o katodickou ochranu galvanickými anodami nebo elektrickými drenážemi (včetně zesílených elektrických drenáží, tzv. saturáží).

Ze zařízení APKO využívá ČD (k ochraně metalických dálkových a traťových kombinovaných kabelů) elektrickou polarizovanou drenáž, typ EPD 13i. Použití je však vázáno na bezpečnou funkci kolejových obvodů, které jsou provozovány v okolí místa připojení drenážního vodiče ke kolejí.

U plynárenských, produktových a vodárenských firem v ČR jsou nejčastěji používány automaticky řízené stanice katodické ochrany (dále SKAO), sestávající obvykle z řízeného usměrňovače připojeného na elektrickou rozvodnou síť, z rozvodu stejnosměrného proudu a z uzemňovací anody (anodové uzemnění). Touto anodou prochází do země elektrický proud z kladného půlu usměrňovače. Záporný pól usměrňovače je připojen k chráněnému úložnému zařízení, čímž je dosahováno trvalého ochranného potenciálu.

Použití zařízení APKO, zejména připojení drenážního vodiče ke kolejí, je nutné vždy posuzovat z hlediska zákona o dráhách a vyhlášky č.100/1995 Sb., řád určených technických zařízeních.

5. PREVENTIVNÍ ČINNOST ČD, S.O., DDC, O.Z.
ČD, s.o., DDC, o.z. (dále jen ČD – DDC) řeší problematiku negativního působení bludných proudů systematicky a trvale. Jedná se zejména o:
* zvýšení elektrické vodivosti kolejí vedoucích zpětný trakční proud (např. svařování kolejnic, kvalita stykových kolejnicových propojek a jejich zdvojení – viz příl.č.5, část
B, doplňující ustanovení k vyhlášce č.177/1995 Sb, k § 18, odst. (7) ve Věstníku ČD., 1995,č.22, lanová propojení),

* zlepšení el.vlastností železničního svršku (čistota štěrkového lože, odvodnění),
* důsledné el.odizolování konstrukčních částí žel.mostů od sebe a proti zemi,
* komplex opatření a možností daných ČSN 34 1500:1995 (čl.6.4 až 6.11, kap.7, 8 až 10, jakož i definování „prostoru ohrožení trakčním vedením“),
* soustředění korozní problematiky do Technické ústředny dopravní cesty (dále jen TÚDC).

V roce 1993 bylo řešení korozní problematiky bludných proudů komplexně zahrnuto do úkolů TÚDC. U Sekce elektrotechniky a energetiky bylo konstituováno specializované pracoviště – oddělení koroze (dále jen OK), které kromě úkolů daných odborným posláním TÚDC má tyto hlavní úkoly:
* provádět měření a zjišťovat korozní situaci mapováním určených lokalit,
* provádět posuzování korozních vlivů na zařízení v okolí ČD, toto vyhodnocovat a stanovovat doporučení výkonným jednotkám ČD,
* je orgánem ČD pro styk s právnickými a fyzickými osobami ve věcech koroze.

Hlavní úkoly a lokality jsou každoročně konkretizovány.

6. VÝSLEDKY ČINNOSTI ODDELENÍ KOROZE (OK)

Korozní měření sestává z. geoelektrických měření, která jsou definována především v ČSN 03 83., jakož i v dalších normách. Pro tato měření, jejichž typickým charakterem je dlouhodobost, jsou nezbytné měřicí soustavy. OK je vybaveno kalibrovaným měřicím parkem, jehož základním článkem je systém KORODAT se speciálním programovým vybavením. Zjednodušeně je soustava korozních měření vyjádřena na obr.1.
Pro potenciálová a proudová měření sestává systém KORODAT ze záznamníků KORODAT 3 nebo 4, ovládacích modulů a FC. Nutné jsou i referenční elektrody Cu/CuSO₄ podle ČSN 03 8362. Při měření dalších veličin jsou použity kalibrované, resp. ověřené jedno- a víceúčelové měřicí přístroje.

Z potenciálových a proudových měření, která se provádí v sekundovém intervalu a to po době až 36 hodin, jsou získány průkazné statistické soubory pro každý měřicí bod. Pomocí programového vybavení systému KORODAT jsou pak naměřené hodnoty vyhodnoceny a vytíštěny jako „statistika s histogramem“ (obr.2) a jako grafický průběh potenciálu nebo proudu v závislosti na čase (obr.3). Podle druhu činnosti OK jsou naměřené hodnoty využity pro:

* protokol o korozním měření (s doporučením a zhodnocením korozní situace pro správce či majitele úložného zařízení drážního i nedrážního, resp. nastavení zařízení APKO),
* tvorbu korozní mapy, charakterizující korozní prostředí v okolí ČD (příklad je na obr.4),
* právnickou osobu ve smyslu § 47 zákona č.266/1994 Sb. (Protokol o technické prohlídce a zkoušce určeného technického zařízení),
* pasportizaci úložných zařízení ve správě ČD,
* normativní účely (připomínkování návrhů nových ČSN),
* normativní účely (připomínkování návrhů nových ČSN),
* jednání s nedrážními právnickými a fyzickými osobami, včetně vypracování připomínek nebo podmínek k stavebnímu řízení pro stavby na dráze,
* účely předávacího a přejímacího řízení (kolaudace),
* účely archivní u ČD – DDC.

Výše uvedený výčet využití korozních měření pro potřeby ČD naznačuje nezbytnost systému ukládání naměřených výsledků v geografickém informačním systému (GIS). Proto byl v roce 1995 vypracován a nadřízenou Sekci 14 DDC, o.z. schválen technický projekt o názvu „Pasport korozních měření na bázi GIS“. Jádro systému, používající prostředí MapInfo, je v ověřovacím provozu.
na pilotním pracovišti v Praze (název systému KORPAS). KORPASem je sledována kompatibilita s budoucím GIS DDC. I když pro identifikaci měřených lokalit je základem KORPASu předpis ČD M 12 „Předpis pro jednotné označování tratí a kolejí v informačním systému ČD“, musí se zatím pracovat s různými mapovými podklady (obr.4) a s neúplnými číselnými.

Stav úložných liniových a neliniových zařízení (včetně objektů a konstrukcí) z hlediska pasivní PKO v ČR dokazuje, že protikorozní ochrana byla podceňována a řešily se jen důsledky havarií. Proto navrhovaná PKO pro zařízení, podle výsledků korozních měření, mají zásadní význam, byť se např. jedná o záměnu průrazky s jednorázovou funkcí (např. typ AŽD) za průrazku s opakovatelnou funkci (např. typ UPO 500). Jinými typickými případy jsou neelektrizované koleje vzdalující se od kolejí elektrizovaných stejnosměrnou trakční proudu soustavou, které nejsou v obou kolejnicových pásech elektricky odděleny izolovanými styky (často i z důvodu kontroly izolovaných styků kolejových obvodů) nebo, v rámci připomíknutého řízení staveb dráhy a na dráze neratifikování korozní situace určité lokality, která je pod silným vlivem bludných proudu, a tedy od stavebního nutno požadovat kvalitní atestovanou pasivní izolaci, případně u potrubí produktovou, pokud to jeho charakter dovoluje, pak vyžadovat potrubí z elektricky nevodivého materiálu. Častým případem je také neratifikování korozní situace určité lokality, která je pod silným vlivem bludných proudu. Pak je nutné od stavebního požadovat, již v rámci připomíknutého řízení staveb dráhy, kvalitní atestovanou pasivní izolaci zařízení, případně u projektovaných kovových potrubí produktová vyžadovat změnu, tj. navrhovat potrubí z elektricky nevodivého materiálu, pokud to jejich charakter dovoluje.

Dodržení a zachování funkce současně
ochran před nebezpečným dotykom neživých částí trakčních zařízení a ostatních zařízení v prostoru ohrožení trakčním

83
vedením, která musí být chráněna (nejčastěji je použito ukolejnéni),
* připojených drenážních vodičů ke kolejišti,
* propojení kolejiště pro průtok zpětného trakčního proudu a
* připojení jiných zařízení s nízkým zemním odporem ke
kolejišti
tak, aby nebyla narušena kompatibilita všech zařízení součástí
dopravní cesty s kolejovými obvody využívanými k přímému
zajišťování bezpečnosti železniční dopravy, bylo důvodem k
vypracování návrhu „Směrnice pro zavedení, používání a správu
koordinačních schémat ukolejnéni a trakčního propojení“.

Návrh směrnice je t.č. ve schvalovacím řízení. Vlastní
koordinační schéma ukolejnéni a trakčního propojení je také
součástí technické dokumentace určeného technického zařízení ve
smyslu vyhlášky č.100/1995 Sb.

7. O NĚKTERÝCH PROBLEMATIKÁCH ŘEŠENÝCH V ČD – DDC

V ČD jsou jako automatizační prostředek k přímému
zajišťování volnosti vlakové cesty používány kolejové obvody.
Jelich pracovní (signální) frekvence prošla historickým
vývojem. V současnosti jsou dosud provozovány kolejové obvody
využívající průmyslové frekvence 50Hz. Drenážním vodičem
připojeným ke kolejišti, který galvanicky propojuje např.kolej
s vodičvím potrubím nedokonale elektricky odizolovaným od země,
může protékává proud o frekvenci 50Hz. Jeho intenzita ale
nesmí být vyšší než přípustná, t.j.100 mA s maximální délkou
trvání 0,1 sec., aby nenastalo narušení bezpečné funkce
kolejových obvodů. Ilustrativní příklad intenzity naměřeného
proudu v drenážním vodiči je na obr.5, ze kterého je zřejmé, že
v drenážním vodiči (drenážován nulový vodič el.rozvodů)
přesáhla intenzita proudu o frekvenci 50 Hz povolenou mez
100 mA po dobu měření v 37,1%. Připojený drenážní vodič je
rovněž vždy místem s nízkým zemním odporem.

84
Proto je řešen úkol technického rozvoje o názvu „Čidlo 50 Hz pro drenáž“. Produktem řešení budou dva funkční vzorky zařízení konstruovaného podle zásad platných pro železniční zabezpečovací techniku. V drenážním vodiči bude čidlo jednak spojitě, spolehlivě a bezpečně kontrolovat amplitudu proudu o frekvenci 50 Hz, aby v případě překročení nastavené mezní hodnoty se v co nejkratší době spolehlivě rozpojil obvod drenážního vodiče. Opětovné propojení drenážního vodiče je vázáno na splnění dalších kritérií. Zařízení má být tak univerzální, aby bylo použitelné pro různé typy elektrických drenáží. Lze odvodit, že zařízení bude v budoucnosti využitelné i pro kontrolu obchodních cest signálních proudů kolejových obvodů. Řešitelem úkolu je ČD - Výzkumný ústav železniční, 07 v Líních u Plzně.

Vyhláška č.177/1995 Sb. v § 25, odst.(9), písm.b) stanovuje, že stav součástí železničního svršku musí v místech provozu kolejových obvodů trvale vykazovat určitou hodnotu měrné svodové admittance mezi kolejí a zemí (obdoba čl.27 normy ČSN 03 8371). Problematika měření měrné svodové admittance mezi kolejí a zemí, resp.přechodového odporu mezi kolejí a zemí za provozu trakční proudové soustavy a s připojenou výstrojí kolejových obvodů je značně složitá a je závislá na homogenitě kolejnicového pásu. V minulosti ověřované metody nebylo možné verifikovat. Měřicí přístroj ISB-1 je využitelný pro měření měrné svodové admittance mezi kolejnicovými pásy téže koleje jen s omezením.

Pro vyřešení tohoto specifického a úzce zaměřeného úkolu byla v roce 1996 vypsána výzva více zájemcům k podání nabídek o zakázku. Akceptována je nabídka VŠB - Technické univerzity Ostrava. Lze připomenout, že ve vyhláškách UIC, v obdobných normách nebo směrnicích německých (DIN/VDE), polských a švýcarských není příslušná metoda či metodika měření stanovena.

Po součinnosti s OK byl v roce 1995 Ministerstvem dopravy schválen „Metodický pokyn - Dokumentace elektrických a

85
8. ZÁVĚR

Problematika koroze z bludných proudů je složitou interdisciplinární oblastí. Proto korozní měření, korozní průzkum a kontrolu účinnosti zařízení APKO vykonávají specializovaná pracoviště, kterým u ČD - DDC je Oddělení koroze Sekce 24 TÚDC. Oddělení sestává ze dvou měřicích středisek dislokovaných v Praze a Olomouci.

Pracovní činnost OK však přesahuje působnost Divize dopravní cesty, neboť korozní měření jsou vykonávána i na nádržích a naftovém hospodářství v DKV a jinde.

Systematičnost v korozních měřeních, jakož i akceptování doporučených návrhů k PKO úložných zařízení, konstrukci a objektů liniových a neliniových, je nezbytným předpokladem pro omezování ztrát způsobených elektrochemickou korozí zejména v okolí kolejíště elektrizovaného stejnosměrnou trakční proudovou soustavou.

Použití zařízení APKO není jednoduchou záležitostí, nebot existuje nebezpečí jejich negativního působení na jiná úložná zařízení. Před vyprojektováním a instalací zařízení APKO je nutno si vyžádat stanovisko specializovaného pracoviště, a u drenáži resp. saturáži také stanovisko místu příslušné Sdělovací a zabezpečovací laboratoře (vlivy na kolejové obvody). Důraz je nutno klást především na kvalitní pasivní protikorozní ochranu úložných zařízení.
LITERATURA:

Praha, prosinec 1996 Lektoroval: Ing. Vojtěch Kladivko

ČD - DDC S14
Obr. 1 Systém KORODAT v součásti korozní činnosti
Statistika

Jméno dat. souboru: D:\KORODATA\USTI_KRA.DK\DK_438_9.BIN
Místo měření: kontrolní měřicí objekt DK u spojky 02/P
Trasa: 

<table>
<thead>
<tr>
<th>Chráněno</th>
<th>Nechráněno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poměrná doba: 62.0 %</td>
<td>Poměrná doba: 38.0 %</td>
</tr>
<tr>
<td>Průměrná hodnota: -0.716 V</td>
<td>Průměrná hodnota: 0.709 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20.00 .. -6.30 .. 0.0 %</td>
</tr>
<tr>
<td>-6.30 .. -3.20 .. 0.0 %</td>
</tr>
<tr>
<td>-3.20 .. -1.50 .. 0.0 %</td>
</tr>
<tr>
<td>-1.50 .. -0.85 .. 7.3 %</td>
</tr>
<tr>
<td>-0.85 .. -0.50 .. 56.7 %</td>
</tr>
<tr>
<td>-0.50 .. 0.00 .. 13.2 %</td>
</tr>
<tr>
<td>0.00 .. 5.00 .. 22.5 %</td>
</tr>
<tr>
<td>5.00 .. 20.00 .. 0.3 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ostatní hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start: 03.05.95, 10:08:40</td>
</tr>
<tr>
<td>Konec: 03.05.95, 14:36:51</td>
</tr>
<tr>
<td>Korodat číslo: 124</td>
</tr>
<tr>
<td>Ochranná hodnota: -0.550 V</td>
</tr>
<tr>
<td>Min. hodnota: -1.445 V</td>
</tr>
<tr>
<td>Max. hodnota: 6.230 V</td>
</tr>
<tr>
<td>Prům. hodnota: -0.175 V</td>
</tr>
<tr>
<td>Počet měření: 16092</td>
</tr>
</tbody>
</table>

Obr.2 Statistika korozního měření a histogram (příklad z jednoho měřicího bodu)
Obr. 3 Grafický průběh potenciálu v závislosti na čase
(časový výřez ze záznamu jednoho měřicího bodu)
Obr. 4 Výřez z korozní mapy
Obr. 5 Průběh proudu v frekvenci 50 Hz v drenažním vodiči (výřez)